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recent summary9 of the various estimates shows a range 
from 16 to 50 MeV. A plot of the best-fit values of V8 

versus (N—Z)/A for our 11.7-MeV data is shown in 
Fig. 4. The solid line is the straight-line least-squares fit 
to the plotted points. 

It is more realistic to apply a correction for the Cou
lomb potential before extracting the nuclear symmetry 
dependence of the potential. After careful consideration, 
the author of Ref. 8 took the Coulomb correction to be 
0.4 Z/A1,s MeV. This correction was applied to the best-
fit values of Vs for the 11.7-MeV data; the results are 
plotted in Fig. 5. These results, which were obtained 
from a generalized optical-model analysis, show definite 
evidence for a nuclear symmetry dependence of the real 
nuclear potential. The magnitude of Vi, as indicated by 
this work, is in reasonable agreement with the value ob
tained by the more extensive study reported by Perey.8 

9 P. E. Hodgson, Phys. Letters 3, 352 (1963). 

I. INTRODUCTION 

THE motivation for examining parity nonconser-
vation in nuclei is at least twofold. Firstly, it is 

desirable to test the parity conservation of all inter
actions1 since the weak interactions, such as beta decay, 
are known not to conserve parity. This program has 
been largely fulfilled in that experiments2-19 have 
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In Ref. 8 a correlation was found between WD and 
(N—Z)/A. For comparison the values of WD that were 
obtained from the optical-model analysis of the 11.7-
MeV data are plotted as a function of (N—Z)/A in Fig. 
6. It is likely that the value obtained for Ni58 is influ
enced by compound-nucleus contributions to the data. 
The solid line in Fig. 6 represents a straight line least-
squares fit to the plotted points with the Ni58 point ex
cluded. The slope thus obtained is in fair agreement with 
the values obtained by Perey from the analysis of 
14.3-, 17-, and 22.2-MeV data. The value of W8 for a 
given value of (N—Z)/A is lower by a few MeV than 
the values obtained from the analysis of Ref. 8 with the 
spherically symmetric optical model. It is reasonable to 
obtain a lower value of WD in the present strong coupl
ing analysis because one important absorption channel 
is treated explicitly. 

The authors gratefully acknowledge the helpful dis
cussions and comments of F. G. Perey. 

already placed exceedingly small upper limits on parity 
nonconservation in either the electromagnetic or nuclear 
interactions. If experiment ultimately detects the small 
deviations to be discussed here, the known parity-
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The influence of the known weak interactions on the parity impurity of nuclear states is discussed. Deriva
tion of a parity nonconserving interaction rests on the assumption of a current-current hypothesis for the 
weak interactions. Consequently, observation of parity impurity effects would be an important confirmation 
of this hypothesis. A simple approximate method of treating the nuclear parity impurity is developed and 
applied in an effort to find experimental situations favorable to observation of effects due to such impurity. 
Parity-forbidden alpha decay from excited states of light nuclei and certain electromagnetic transitions in 
the heavy nuclei appear to be promising. Special attention has been paid to the internal conversion electrons 
from the 123-keV transition in Lu173 whose polarization is estimated to be about 0.4%. An effect on polarized 
neutrons analogous to "optical rotation" is also discussed. 
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\ / FIG. 1. Feynman 
\ / \/~ "X diagrams for the low-
y K y n est order weak inter-
A k / action. The neutron 
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n / \ p m a y De simultane-
/ \ p ously interchanged. 
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violating weak interactions will presumably be re
sponsible. Secondly, the strength of any parity non-
conservation, henceforth assumed to arise by inter
vention of the weak interactions, gives some insight 
into the structure of these interactions. Several au
thors20-22 have investigated the weak-interaction cor
rections to the pion-nucleon vertex. 

The influence of the weak interactions on nuclear 
processes has also been examined theoretically by 
Kriiger23 and Blin-Stoyle.24-26 This paper approaches 
the calculation of parity nonconserving effects in a 
somewhat different way from the above-named authors. 

Conventionally,27 the weak-interaction Lagrangian 
is written 

£ i n t = V 8 G W . (1) 

The theoretical and experimental work of recent years28 

has largely established the vector nature of the current, 
as anticipated in Eq. (1) above, and the contribution 
of both axial vector and polar vector currents together 
in / . The form of the current, suggested by consider
ations of symmetry and simplicity, is usually taken to 
be 

J^ {eytlav^)+ (£7^2) + (n7M#H , (2) 

where a=i(l+vyi). 
Recent experimental evidence29 indicates a distinction 

between the neutrino associated with the electron in the 
weak interactions and the neutrino associated with the 
muon: This has been indicated in Eq. (2) by the sub
scripts 1 and 2 referring respectively to the electron-
and muon-neutrino. Equations (1) and (2) together 
predict processes not yet observed, such as neutrino-
electron scattering, and verification of such processes 
would constitute an important confirmation of the 
theory. 
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Observation of self-interaction terms in the postu
lated beta-decay interaction, as for example (ftp) (np)+, 
presents just such a situation; the initial and final 
particles are the same. In this paper, the (ftp) (non
interaction is discussed extensively, with only a com
ment on the lepton "self" terms below. 

A. The Lepton "Self" Terms 

Although the coupling (evi)(evi)+ could be tested 
directly from the elastic scattering reaction vi+e—> 
vi+e, the experiment is greatly complicated by the 
small cross section27 expected from the theory. The 
cross section increases with the center-of-momentum 
energy, but this feature cannot be utilized, as presently 
there are no intense high-energy beams of v\ (or n). 
Even if such beams were available, the cm. energy is 
much less for electrons than for nucleons resulting in a 
large relative cross section for obscuring processes such 
as vi+p-^n+e or vi~\-n—•> p-\-e. Reines30 has pro
posed an experiment utilizing the high-intensity, low-
energy antineutrinos from an atomic pile. 

Astrophysical31 significance has been attributed to 
the (evi)(evi)+ coupling since stellar energy loss via 
neutrino pair production would become important at 
high temperatures.82,33 

Other experiments are generally complicated by 
competition from electromagnetic processes: The 35i 
state of positronium is predicted from Eqs. (1) and (2) 
to decay into v+ v, but the rate for this decay is only 

3G2mV/16ir2 = 5 X10"11 sec"1, 

giving a branching fraction 

r(3Si -> 37)/r(351 -» vi+ H) = 7X 10~18, (3) 

while the x5o state is stable to this decay mode due to 
helicity requirements. The branching fraction is quite 
sensitive to the mass of the particle, but even for the 
muon-antimuon system, Eq. (3) gives only 1.3 X 10~8. In 
this latter system the natural muon decay itself com
petes unfavorably: 

MzSi->e+h+V2+fi) 
=187ra3=2.2X10-5. 

B. The Intermediate Vector Boson Hypothesis 

It is possible that the weak interactions are mediated 
by a vector boson, and if this is correct, then /M/M

+ in 
Eq. (1) should be replaced by J^D^J^, where 

D,v= faJI9*-q,,q,)/(Mx*-f), (4) 

with Mx= boson mass and gM=four-momentum trans-
30 F. Reines, Ann. Rev. Nucl. Sci. 10, 1 (1960). 
31 F. Hoyle and W. A. Fowler, Nature 197, 533 (1963). 
32 M. Levine, Ph.D. thesis, California Institute of Technology, 
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33 H. Y. Chiu, Phys. Rev. 123, 1040 (1961). 
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fer. The effect on the range of interaction is the only 
feature of the boson considered in this paper. 

II. THE INTERACTION 

A. Lowest Order 

The Feynman diagrams for the lowest-order weak 
interactions involving just nucleons are given in Fig. 1. 

The interaction, ignoring for the moment vector 
boson contributions and pionic corrections, is in lowest-
order of perturbation theory 

Hint=\/SG(n1yliap1) (£27^2), (5) 

where the notation of Ref. 27 is used throughout, 
specifically a=%(l+m), GM2 =1.01 ±0.01 X10~5, M is 
the proton mass, 

Y=/fa, 7«=£, 76=7*7*7.7*, etc. 

The self-energy diagram in Fig. 1(b) might be of 
interest since it could introduce pseudoscalar and 
pseudovector terms into the nucleon propagator and 
thereby be ultimately a source of parity nonconserving 
effects. No pseudoscalar term can be generated if the 
fundamental weak interaction couplings are 7M and 
^7M75> s m c e s u c h a pseudoscalar would give time-
reversal noninvariant effects while the interaction de
scribed will not. The pseudovector contribution must 
result in a nucleon propagator of the form (p+iriyt 
Xp—M)~\ where (p=y^)f or (p+iyyt>p—M)\l/N=0 
for the free nucleon. If all nucleon states are trans
formed by ^jv' = exp[— iybsmh~l(r}/2)']^N, the new 
states then obey (p—Af)^j/=0 and the correction to 
the propagator may be removed by a gauge trans
formation. The consequence of this is to change the 
electromagnetic coupling (i/ov^) to ( $ { 7 / * - ~ W 6 7 M M 
which would destroy gauge invariance; hence the cor
rections to electromagnetism given by diagrams such 
as Fig. 1 (b) with a photon coupled to the vertex must 
give 7M -> 7 M + W 6 7 M a n d altogether (Htrt) -> (#'7/^0-
A pseudovector meson coupling is transformed qy$—> 
Qyt+iyQ and the extra term gives no contribution, 
while the pseudoscalar coupling is unchanged, hence it 
leads to no effects here. 

Equation (5) may also be written 

V^Gl{aNi)y,{aNl)']Tn[_{aN2)y,{aN2)'], 

where N is the combined isotopic spinor (1X2) and 

Dirac spinor (1X4). The proton isotopic spinor is I J 

and the neutron isotopic spinor is I 1 1. T12 is the iso

topic spin operator necessary to reproduce (6) and 

is given by (T+1TJ+TJT+2), where r + f n j = 0; 

action can be thought of simply as a polar vector 

interaction between the (aN) components (spin anti-
parallel to the momentum vector) of the two nucleons. 
Thus, the nucleons are "reminded" of their intrinsic 
handedness when involved in the weak interactions, 
and have a tendency to correlate their spins with the 
momentum vector, as would be occasioned by terms 
of the form cr«p in the Hamiltonian. Parity is no longer 
a good quantum number if the Hamiltonian contains 
such pseudoscalars. The parity admixing can be seen 
another way by considering a classical system of a 
nucleon orbiting a force center. If the spin and orbital 
angular momentum vectors are initially parallel, then 
a <r«p interaction will produce a torque causing the 
spin vector to precess out of alignment with the orbital 
angular momentum vector. To conserve total angular 
momentum, the orbital angular momentum must 
increase. The quantum-mechanical analog would be, 
for example, a P3/2 state which must admix Z>3/2 states 
to be stationary. The actual nonrelativistic form of 
Eq. (5) is slightly more complicated than cr«p and may 
be written 

1 
_ 8 i / 2 G _ ( ( , 2 _ f f l ) . {(p 2-P l) ,«( l ,2)>+ 

SM 

i ( 6 ) 

~ff/»G^-(ir2X<r1)-C(p2-p1) ,8(l ,2)]- . 
SM 

The curly brackets followed by the subscript ( + ) 
indicates the anticommutator, i.e., {A,B}+=AB+BA. 
The commutator is denoted by square brackets followed 
by the subscript (—). 

B. The General Form 

The most general polar vector current is 

J/(q2) =Clv(q
2)y,+C2V (q2)i<T»vqv+Czv(q2)iq,, (7) 

where o-^v=^i(y^yP~7„7M) a n d <2V is the four-momentum 
transfer with q2 = q^q^ If the CVC theory27'34 obtains, 
the additional condition qpLJfi

v=0 must be satisfied 
which requires Czv = 0- Furthermore, we may identify 
Civ(q2) = Flv(q

2) and C2v(q2) = F2v(q2), where F1V and 
F2v are the nuclear isovector charge and magnetic 
moment form factors as defined by Hofstadter.35 The 
subscript V appearing on G and F refers to vector 
properties in different spaces, Lorentz for G and iso
topic spin for F. Czv(q2) is expected to be zero even if 
the CVC theory is not valid: If y» is regarded as the 
fundamental coupling, then strong interaction correc
tions cannot induce GW without violating known strong 
interaction symmetries.36 Under charge conjugation 7^ 
and i<TpVqv transform alike while iq^ transforms dif
ferently, and consequently, iq^ cannot be produced by 
radiative corrections of interactions invariant under 

34 M. Gell-Mann, Phys. Rev. I l l , 362 (1958). 
35 C. deVries and R. Hofstadter, Phys. Rev. Letters 8, 381 

(1962). 
36 S. Weinberg, Phys. Rev. 112, 1375 (1958). 
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charge conjugation, as are the strong37 and electro
magnetic interactions. This result is familiar for the 
electromagnetic interaction. Several simplifications fol
low from the CVC theory. For one, the additional 
momentum-transfer terms in the boson propagator, 
Eq. (4), do not contribute in lowest order, and we may 
treat the boson here as a scalar meson. 

The most general axial vector current is 

V (?) = [CIA (q2h»+C2A (q2)<r,vqv+C,A (q2)q^iy,. (8) 

The assumption that iy»y*> is the fundamental coupling 
generating the axial vector current eliminates the terms 
that transform differently from iy^yz under charge37 

conjugation. This requires that C2A(<72) = 0 . Further
more, the igM75 term fails to contribute for a vanishing 
divergence of J/. This ''induced pseudoscalar" term 
will contribute to the tiny parity conserving part of the 
weak interaction, negligible compared to strong parity 
conserving interactions. All that is known experimentally 
about CIA(# 2 ) , equal to —GA/Gv in the usual notation,38 

is the magnitude near zero-momentum transfer 

C I A ( 0 ) = X = 1 . 2 0 ± 0 . 0 4 . 

C. The Interaction (CVC) 

The CVC theory offers an alternative method of 
introducing the parity nonconserving interaction. Here, 
the axial vector current is treated on the same footing 
as the electromagnetic field, and is introduced into the 
Hamiltonian in the same way, namely, 

pi*-> pi,i-eAlt(r1)%(l+T2l) (9) 
becomes 

X(T+*TJ+T-W). (10) 

Here, the subscript 2 refers to the particle generating 
the field seen at the position of particle 1, and e is the 
proton charge. For the moment, the vector boson and 
form factor considerations have been set aside to sim
plify the expressions. The nonrelativistic reductions for 
the axial vector current are 

[w(ri)irY6#( ri)]2= -~0T263(ri~r2), (11) 

C^(r i )no75^(r i ) ]2=-( l /2M){cr 2 .p 2 ,5 3 ( r 1 - r 2 )}+ , (12) 

where the equivalent operator has been written on the 
right-hand side, and the delta function derives from the 
implicit assumption that particle 2 acts only at the 
position of particle 1. 

37 Charge conjugation is usually combined with a rotation of 
180° about the "y" axis in isotopic spin space and called G con
jugation. The strong interactions are invariant under the latter 
transformation; however, the essential difference between the 
interaction currents iq^ and y„ comes from their charge conjugation 
properties. 

38 O. M. Kofoed-Hansen and C. J. Christensen, Handbuch der 
Physik, edited by S. Fliigge (Springer-Verlag, Berlin, 1962), Vol. 
41, Part 2, p. 88. 

The nonrelativistic Hamiltonian for a charged spin-J 
particle interacting with the electromagnetic field is 

1 e 
— [ p ~ ^ A ( r ) ] 2 + ^ ( r ) - ( M + l ) — ( < r . B ) + . • • , (13) 
2M 2M 

where /x is the anomalous magnetic moment. For two 
particles, each acting as an axial-vector current source 
of interaction for the other, Eq. (13) together with the 
substitutions (10) through (12) give 

•(<r2-<ri)-{(p2-pi),*(l,2)}4 

8^2G 
+ G*"+1) (icr2X<Fi)-[(p2-pi),a(l,2)]J2 

SM J 
12, (14) 

which is just Eq. (6) with an additional correction for 
the anomalous moment. The contribution of Eq. (14) 
to the electromagnetic interaction is given by applying 
substitution (9) which yields for nucleons 

eSl'2G 

8M 
• ( ^ - ( r O - A ^ ^ l ^ ^ ^ X T 2 ) , . (140 

In principle, the contribution by any nuclear potential 
to the parity nonconserving forces via substitution (10) 
can be computed. For electromagnetism, it has not been 
possible to compute such corrections from the nuclear 
interactions mainly due to ignorance of the structure of 
the strong interactions. The corrections are no easier to 
compute for the parity nonconserving interaction than 
for electromagnetism, and the interaction (14) is there
fore necessarily incomplete. There does not appear to 
be any advantage then to including such parity non-
conserving forces as are generated by the spin-orbit 
forces in Eq. (13), since even more important terms of 
this form are known to be generated by the nuclear 
forces. Although the nuclear forces can be treated 
phenomenologically, it does not follow that corrections 
computed from such a treatment actually constitute 
any improvement. For example, when the exchange of 
charged pions, etc., among nucleons is replaced by an 
effective static potential, the substitution (9) is in
complete as the current carried by these charges is 
concealed. These problems are familiar for electro
magnetism, but they differ in scope for the parity non-
conserving interactions due to the vast difference in 
the range of interaction. Many electromagnetic features, 
such as the Coulomb energy of a nucleus, are relatively 
insensitive to the detailed distribution of charge and 
currents near the individual nucleons. The parity non-
conserving forces act, however, only when two nucleons 
are close together, and analogy to electromagnetism 
cannot be applied to argue away effects of the detailed 
nuclear interactions. I t might be argued to the contrary 
that, since the nuclear interaction seems to exhibit a 
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strong repulsive core, it is rare for two nucleons to be 
sufficiently close together to feel the weak interactions. 
This point will be examined in the next section and the 
difficult but important question of additional contri
butions to Eq. (14) set aside. 

D. Effect of a Repulsive Core 

In the center-of-mass system of two nucleons, 
q* = — Q2? w h e r e Q is the three-momentum transfer, our 
collection of form factors and the boson propagator 
given in Eq. (4) produces in Eq. (5) such factors as 

C1V(-Q2)CIA(-Q*)(MX>/MX*+Q>), 

whose Fourier transform is the "potential." The form 
of dv is deduced from experimental measurements on 
the electromagnetic form factors, FiV, of the nucleon by 
using the CVC theory as discussed in Sec. I IB. The 
experimental data of FiV are summarized35 as 

Fiv(~Q2) = ( l -w*)+ {vMv'/MJ+Q*), 

where i equals 1 or 2, Afv = 600 MeV, i>i=0.92±0.10, 
and 02=1.10. If the momentum dependence of C\A is 
ignored along with the small difference between i = l 
and 2 (*>,-«!), the potential becomes 

Writing Mvrc=a, Mx/Mv = £, we find 

X'=\(£2- l )-1K2( l+«)^ a- (l+fc)*-*"], 
which is plotted in Fig. 2. The shaded portion corre
sponds to rc=0A0±0.05F, Mw

2=(18±2)Ar,2 , and an 
arbitrary estimate ( - = 2 ± 1 . Figure 2 suggests X '~0 .8 \ 
~ 1 . 0 and therefore X' has been set equal to unity for 
numerical computations throughout this paper. Re
placement of X by X' is presumed to correct for repulsive 
core effects. 

III. ANALYSIS 

A. General Considerations 

/(r) = X-
M*M* 1 

(Mv
2-Mx

2) 4TIT 

_(e-Mxr_e-Mvr^ (15) 

Practical calculations are generally made with nuclear 
wave functions having no interparticle correlations due 
to a repulsive hard core. For such calculations, there is 
little point in using Eq. (15) in preference to X5(r). On 
the other hand, f(r) for r less than rc, the radius of the 
core, will not contribute if wave functions containing 
the hard-core correlation are used. Thus, an estimate 
of the effect of the core is simply to use the uncorrelated 
wave functions along with X'5(r) where 

J re 

f(r)4Tr2dr. 

Z=<* H 

FIG. 2. Plot of X'/X as a function of a and £. 

Angular Momentum 

Interaction (14) transforms as a pseudoscalar under 
combined rotation of the space and spin coordinates; 
thus, the total angular momentum is conserved, but 
not necessarily the spin or orbital angular momenta 
separately. Conservation of total angular momentum 
is built into the interaction by the choice of possible 
couplings. At least one group6 has interpreted a parity 
impurity experiment alternatively in terms of an upper 
limit on the angular momentum impurity of a nuclear 
level. There is, however, at present, no experimental 
or theoretical association between the weak interactions 
and any possible angular momentum violating inter
action. Since all scalar and pseudoscalar interactions 
automatically conserve / and mj, an interaction vio
lating these quantum numbers would necessarily con
sist of an incomplete tensor such as the z component of 
a vector or the zz component of a vector product. Such 
terms appear when the Hamiltonian is incompletely 
formulated as, for example, by including the magnetic 
interaction between the nuclear spin and the atomic 
electrons, but not otherwise including the electrons in 
the Hamiltonian. 

Isotopic Spin 

The isotopic spin dependence of Eq. (14) can be 
written 

r 1 2 = ( r +
1 r J + r J r +

2 ) 
= 2 r i 2 ( 0 ) + r i 2 ( 2 ) j ( 1 6 ) 

where 
r 1 2 < ° ) = ^ 2 , 

No 7\2
(1) can appear since the Pauli principle requires 

the interaction to be symmetric under combined ex
change of spin, space, and isotopic spin. The corrections 
from the strong interactions, as illustrated in Fig. 3, 
may alter Eq. (16) to 

i r 1 2=K2+6 1 -e 2 ) r 1 2w+(i-6 1+6 2 ) r 1 2 ( 2 )+e 1+6 2 , ( i7) 

where Fig. 3(d), for example, illustrates the effective 
coupling (pp)(fip)+ via the isotopic spin dependence 
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(a) (b) (c ) (d ) 

FIG. 3. Strong interaction corrections to the 
(tip) (np)+ interaction. 

K I + T ^ T , 2 ) , while Fig. 3(b) gives (np)(pn)+ with de
pendence Kl—TgVg2). The two additional couplings 
have been arbitrarily assigned the relative amplitudes 
2ei and 2e2 in Eq. (17). Strictly ei(e2) should appear as 
the coefficient on a force with slightly shorter range; 
however, the difficulty in actually performing the re
quired calculations is well known, and ci(e2) in Eq. (17) 
should be regarded merely as a crude imitation of cor
rections such as illustrated in Fig. 3. 

The appearance of 7\2
(2) in Eq. (16) is significant in 

that the usual isotopic spin selection rules may be 
circumvented. First-order electromagnetic and beta-
decay transitions are forbidden between states with 
AT=2. The operator Ti2

(2) admixes parity impure 
states differing from the unperturbed state by two units 
of isotopic spin. Thus, for AT= 2, the regular (parity 
allowed) electromagnetic and beta-decay transitions 
are forbidden, while the irregular (parity forbidden) 
transitions are allowed. For example, a hypothetical 
beta-decay transition between a (7 r ,r) = (0~,2) initial 
state and a (0+,0) final state must proceed by a T-
forbidden first-forbidden decay, but is completely 
allowed from an admixed amplitude of (0+,0) in the 
initial state or (0~,2) in the final state. 

Experimental detection of a AT =2 beta- or gamma-
ray transition would not alone support interaction (14), 
since the Coulomb forces also lead to isotopic spin im
purity of the levels. A state identified with a certain 
value of T will, in general, have, due to Eq. (14), parity 
impure admixtures of T, Tdhl, and r ± 2 . Only for 
T>2 does the full range become possible; otherwise, 

r=o-*r=o, 2 and r=i-»r=i, 2,3. 
Time-Reversal Invariance 

The interaction (1) assumed is invariant under time 
reversal. The validity of this assumption has not been 
tested to great accuracy, although the apparent com
plete violation of both parity and charge conjugation 
invariance, together with the TCP theorem, indicate 
the weak interactions are invariant under time reversal. 
It follows from time-reversal invariance39 that: (a) A 

39 E. P. Wigner, Group Theory (Academic Press Inc., New York, 
1959), p. 344. 

quantity odd under the parity transformation has zero 
expectation value despite the presence of the parity 
nonconserving interaction, in contrast to: (b) A 
quantity even under the parity transformation has its 
expectation value unaltered (to order (?) by effects from 
the parity nonconserving interaction. Assertion (b) 
follows directly from the parity selection rule. The 
parity of a nuclear state is therefore unchanged (to 
order G2) as a trivial consequence of (b), and it is un
necessary to develop a special notation, such as complex 
or fraction parity, to describe parity impure states. 

The odd-parity static moments (electric dipole, mag
netic quadripole, electric octopole, etc.) are required 
by (a) to vanish despite the presence of interaction (14), 
and experiments to detect these moments do not test 
(14). 

Assertion (a) can be phrased equivalently as requiring 
the phase of the regular and irregular wave functions to 
be relative imaginary. A useful application is the effect 
of any time-reversal invariant parity nonconserving 
force on a single-particle wave function, in which case 
the radial dependence of the number of nodes n and 
orbital angular momentum I may be separated from the 
spin and angular coordinates coupling the spin s=\ and 
/ into j=l±% to give \[/=Rni(r)\sljm). The only wave 
functions that can be admixed are Rn>v (r) \ sl'jrn), where 
l' = 2j—l. However, the operator vf(r~t/r) has the 
property 

-(<r-*9|rf/w>= \sVjm) (l'=2j-l), (18) 

and the irregular wave function can then be written 
iGcr-fO(r)\f/y with 0(r) a scalar operator acting only on 
the radial wave function. To order G2, the new wave 
functions are given by 

#=exp[*G<r-«)(r)>. (19) 

It is useful to note that the couplings dropped from 
Eqs. (7) and (8) generate parity nonconserving inter
ference terms that violate time-reversal invariance. 
Similarly, a scalar interaction Js=Cis and a pseudo-
scalar interaction / P = C I P 7 5 + C 2 P ^ 7 5 can only give 
parity nonconservation together with violation of time-
reversal invariance. The scalar coupling Js'=C2si<I 
essentially vanishes for nucleons but otherwise would 
give parity nonconservation plus time-reversal in
variance and, in fact, the interference term with Jp 

has the same structure as would be given by the 
— qfiqy/Mx

2(Mx2—q2) part of the propagator (4). The 
tensor parity nonconserving interaction (0-^)1 (o>75) 2 
violates time-reversal invariance, and therefore ex
pression (14), after modifications of the form (15) and 
(17), represents the most general parity nonconserving, 
time-reversal invariant, Hermitian, two-nucleon, 
pseudoscalar potential. 

B. Single-Particle Approximation 

With an expression as complicated as (14), it is 
difficult to make any estimates without having rather 

file:///sVjm
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detailed wave functions for each specific problem. A 
natural approximation in a many-body system is to 
select a specific particle and average the interaction 
over the remaining particles. This has been done in 
Appendix A with the result that Eq. (14) reduces to 
the single-particle operator 

H^2G'*-&[1+{N--Z)TJA'] = G"V-V, (A6) 

where 

po— nucleon density in the nucleus, 

and p now refers to a fixed coordinate system at the 
center of mass of the nucleons (other than 1). The 
averaged isotopic spin part requires a proton ((rz)= + 1) 
to interact only with | [ 1 + {N-Z)/A~] or N/A of the 
density, i.e., just with the neutrons and vice versa. 
Note that the factor (p9+1) = 4.70 arises from the CVC 
theory, and would necessarily be estimated — 1 in the 
absence of this theory. 

A simple model Hamiltonian with the above (A6) 
interaction such as 

H=p2/2M+V(r)+G"o-v=H0+G"<j'V (20) 

can be solved to order G2 by the substitution [compare 
with (10) and (11)] 

p-*p-MG"<r 

or equivalently [compare Eq. (19)] 

H=eiSHoe-iS; **=e*W 0 ) , (21) 

where S=MG"vr and ^A;(()) are the eigenstates of Ho. 
Such a transformation is especially useful since the 
matrix elements of an operator A between the impure 
parity states of Eq. (20) are equal to the matrix 
elements of 

e-iSAei8 = A-i£S,A2+0(Gi) = A+A (22) 

between the unperturbed states. It is often simpler in 
actual calculation to use —i(SA—AS) and the proper
ties of the operator vr [Eq. (18)] rather than using 
the operator given by explicitly computing — i\JS,A~\. 
The operator —i[_S,A~] is denoted by A in this paper: 
the operator Ml, for example, would be —i[S,Afl] 
and has selection rules similar to an El transition. If A 
itself has an irregular part generated by the interaction 
(14), theniL is understood to be — C^>^4]+^4irreg. 

Historically,40 the degree of admixing is described by 
<5 ($=^-f i&f/') which may now be conveniently defined 
as $=MG"R, where R=RQA1'd, (i?0=1.2X10-13 cm), 
giving typical numerical results (MG"Ro=1.2X10r7 

for N=Z). 

A = 16; S=3.1X10"7 

A = 160; £= 8.0X 10~7 for an extra proton 
= 5.5X 10~7 for an extra neutron. (23) 

40 T, D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956). 

A quantity (ft is usually defined such that 

(||irregular transition||) 
i(R$= , (24) 

(||regular transition||) 

with (ft containing the explicit details after factoring 
out the strength, $, of the parity nonconserving inter
action. In practice, (ft has been estimated by comparing 
"typical" rates for both types of transition; however, 
we may use Eqs. (24) and (21) together with $=MG"R 
to estimate 

( l | [a . r /^ i r re g ] | | ) 
(ft= . (25) 

(IMregularll) 

In Eq. (24) the matrix elements are taken between the 
perturbed states, while in Eq. (25) the unperturbed 
wave functions are to be used. 

Several interesting deductions can be made in this 
simple model which should remain as approximate 
features of any results using Eq. (14) and a more 
sophisticated nuclear Hamiltonian. 

(1) Electric multipole transitions will not be admixed 
into the corresponding magnetic multipole. To simplify 
the description, we denote EL(ML) as representing an 
EL transition in which the parity impurities relax the 
selection rules to allow an admixture of ML: we are 
considering here the ML(EL) transitions. The EL 
transition operator, ignoring the tiny magnetic con
tributions, is proportional to the corresponding static 
moment operator and therefore commutes with S in 
Eq. (22), hence EL= - £ S , E L ] = 0. See Sec. IVD. 

(2) EL(ML) transitions will be admixing, since 
—i[S,ML~]?£§ as is discussed in more detail in Sec. 
IVD. 

(3) The admixing is independent of V(r), conse
quently admixing should be independent of the level 
structure. One might suppose that two levels of opposite 
parity, but the same spin, would admix more strongly 
if close together as suggested by the energy denominator 
in the perturbation theory expression for admixing. 

(Expression (14))„fc 
^k=^k+ L i M — . 

n*k Ek — En 

However, this argument fails to the extent that the 
perturbation can be removed by a gauge transformation. 
Furthermore, no requirement of spherical symmetry 
has been imposed, and the arguments apply unchanged 
to particles bound in a deformed potential such as used 
in the Nilsson41 model. 

(4) No AT=2 effects appear within the single-
particle approximation as can be seen from the form of 
Eq. (A6). 

It would be an interesting extension of our results if 
the spin-orbit force could be included in Eq. (20); 

41 S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys, 
Medd. 29, No. 16 (1955). 
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however, S and or-1 do not commute. I t is generally 
assumed that the spin-orbit contribution is from regions 
near the nuclear surface, although the origin of the 
force is poorly understood, and we have already thrown 
away surface terms when approximating the nuclear 
density as being everywhere constant. Furthermore, 
any spin-orbit force should induce its own parity non-
conserving interaction via Eq. (10) and it is not correct 
to simply add u(r)a-l to Eq. (20). Thus, the approxi
mation $~eiS\(/ is probably as good with the spin-orbit 
force as without. However, in Sec. IVD, it will be 
assumed, for the purpose of obtaining order-of-mag-
nitude estimates of ML(EL) transitions, that a force 
(a/2)cr-l is simply added to the nuclear Hamiltonian 
in Eq. (20). 

IV. EXPERIMENTAL PREDICTIONS 

A. General Effects 

Most of the comments in this subsection have been 
made elsewhere1 and are repeated only for the sake of 
coherence. An easily understood phenomenon that is 
due to admixing of irregular parity states is the polari
zation of decay products. If an El gamma-ray tran
sition, e.g., l~~-^0+ contains traces of 1+—>0+ and 
1~ —-> 0~, then M1 is admixed. Classically, this would 
correspond to an oscillating electric dipole with a 
superimposed oscillating magnetic dipole 90° out of 
phase. At a certain instant the electric field seen by a 
distant observer will be entirely due to the electric 
dipole and parallel to the dipole direction. A quarter 
of a period later, the electric field is now due to the 
magnetic dipole and the field is perpendicular to the 
dipole direction. Thus, an elliptically polarized out
going wave rather than a plane polarized wave should 
be observed. In other words, the tendency of a nucleon 
to align its spin with its direction of motion can be 
transferred to the outgoing radiation. An example of 
such an effect is the circular polarization of inner 
bremsstrahlung from polarized electrons in beta decay. 
Similarly, the scattering of initially unpolarized par
ticles can result in a polarization along the momentum 
vector of the outgoing particles. 

If a decaying nucleus is polarized in a definite direc
tion and emits polarized radiation, that radiation will 
tend to be emitted parallel (or antiparallel, depending 
on the specific details) to the direction of polarization 
of the decaying nucleus. Thus an alternative to meas
uring the helicity of weakly polarized particles is to 
measure their angular distribution, which contains odd 
powers of cos0, from polarized nuclei. If parity non-
conserving interactions are used to both polarize the 
decaying nucleus and outgoing radiation, the odd 
powers of cos0 correlation are of order CF2. Thus, in
vestigators11'12 have preferred to excite and polarize 
the nuclei via beta decay (beta-gamma correlation) or 
polarized neutron capture (w-gamma correlation). In 
principle, an inverse method such as gamma-beta 

correlation could be used, but the long beta-decay 
lifetimes (shortest known N12 is 0.01 sec) permit de
polarization effects to wash out all angular correlation. 

Formulas for the magnitude of these polarization 
effects have been derived by Kriiger23 and are repeated 
below for convenience. The degree of circular polari
zation is given simply by 

where P= + l would mean pure right-hand (i.e., 
angular momentum in the direction of propagation) 
circularly polarized radiation with the phase convention 
of Eq. (24). The beta-gamma angular correlation 

W(B)=l+Acos0+-> 
gives 

in a transition J"—> J*'-—» J'1 

A = 
v l-2s{J'(J'+l)l 1/2 

1 + S2 

-J'(J'+l)-J(J+l)+2-

[3/ /(/ /+l)]] 1/2 
•Fi ( £ £ / " , / ' ) ft* 

and s~Cvf\/CAfv for allowed transitions. The co
efficients Fi are tabulated42,43 by several authors. A 
pure allowed Fermi transition does not change the 
magnetic substates and therefore cannot lead to a 
polarization of the nucleus after beta decay. This can 
be seen from the above expression by noting that 4̂ —• 0 
as s —* co. The regular transition has multipolarity L 
and the irregular transition has multipolarity L. 

B. Alpha Decay 

Alpha decay of the type J T —> 0*' with w' = (— l)J+1ir 
(e.g., 0~—> 0+ , 1+—» 0+ , etc.) cannot occur if parity is 
conserved. In principle, decay could go via emission of 
an alpha plus a photon; however, it should be possible 
to distinguish a line spectrum of alpha particles, whose 
energy can often be predicted with great accuracy, from 
the broad spectrum resulting from this mixed decay. 
I t is necessary that either the initial or final state have 
zero spin since a transition such as 2+ —» 1+ , although 
forbidden to p-w&ve alpha particles, can occur via d 
wave, and alpha-decay rates are relatively insensitive 
to the angular momentum change. Thus we will only be 
interested here in even-^4 nuclei. 

The width for alpha decay is usually44'45 written 

r * = 2 P m
2 , 

where Pi is the penetration factor and equals 
kR/[F?{R)+Gl

2{R)~] in the notation of Block et a/.46 

42 A. H. Wapstra, G. J. Nijgh, and R. Van Lieshout, Nuclear Spec
troscopy Tables (North-Holland Publishing Company, Amsterdam, 
1959). 

43 K. Alder, B. Stech, and A. Winther, Phys. Rev. 107, 728 
(1957). 

44 R. G. Thomas, Progr. Theoret. Phys. (Kyoto) 12, 253 (1954). 
45 A. M. Lane, Rev. Mod. Phys, 32, 519 (1960). 
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The nuclear structure effects are contained in 7* which 
is given by 

7l= (2MrR)^ I <pi*XdS, 
J s 

where <pi is the wave function of an outgoing /-wave 
alpha particle plus the daughter nuclear state, while X 
is the parent nuclear state. The integration is over all 
the internal coordinates of the alpha particle plus 
daughter final state and integration of their relative 
coordinates over the "interaction surface'' which is 
simply a sphere of radius R. The quantity R is usually 
taken to be the Coulomb radius if the initial state is 
spherically symmetric. 

Rather than solving for yh we will try to extract 
from yi the features dependent on the parities. Thus we 
write 

yi=yi0(af\at)(\f/f\\l/t), 

where (af\ is the wave function of the actual outgoing 
alpha particle, while |a t) is the zero angular momentum 
state of the four nucleons having center of mass a 
distance R from the center of mass of the A — 4 nucleons 
that will comprise the daughter nucleus, denoted by 
|^i). The physical daughter nucleus is (^/ | . The 
quantity YZ° then describes the amplitude for the 
product nucleus to be in this state of near separation. 
I t will be most convenient here to assume the normali
zation (<xf\ai) = (\pf\\pi)=l which gives 7z=7z° for 
allowed alpha decay. To "turn on" the parity non-
conserving interaction, we then have simply 

yi = yi°(af\ai)($f\$i), 

with YJ° essentially unchanged. Wave functions with a 
tilde refer to the parity impure states, and a prime is 
employed to indicate just the irregular parity ampli
tude. Thus \j/k=4/k~\-^k, where \pk is the unperturbed 
state with quantum numbers k. 

To be definite, consider the hypothetical case of a 
0~ state in the parent nucleus, unstable energetically 
to decay to the ground state (0+) of the daughter, then 

70 (parent) = 7o°[(0+10'-}alpha<0+10+)daughter 

+(o+|o+)alpha(o+|o ,-}daughter] 
~7o°[<0+10'->alpha+<0+10'-)daughter]. (26) 

Insofar as the parity nonconserving forces among the 
nucleons of the daughter (alpha) nucleus are concerned, 
the second (first) term on the right-hand side of (26) is 
identically zero. The state with nominal parity ( + ) and 
the state with nominal parity (—) are distinct solutions 
of the Hamiltonian including the parity nonconserving 
forces, and therefore are exactly orthogonal. This need 
not mean that (26) vanishes, it merely indicates that 
part of the parity nonconserving interaction cannot 
contribute to the decay. The contribution from the 
parity nonconserving forces between the "alpha" and 
the "daughter" nucleus has not been included, and the 

"alpha" induces a certain amount of irregular parity 
amplitude in the "daughter" wave function and vice 
versa. The single-particle approximation then gives 

4 
(0+1 (^daughter = -MG'{<d+1 L «T *i I 0") , 

A i 

taking the average density of the "alpha" particle seen 
by each nucleon of the "daughter" to be 4/'A of the 
average nuclear density. Only one nucleon of the 
"daughter" is assumed to be in the irregular parity 
state, an approximation equivalent to assuming the 
normalization (\f/f | \f/z) = 1 for ordinary alpha decay. The 
equivalent approximations for the influence of the 
"daughter" on the "alpha" then give altogether 

7 i = *yz°. (27) 

The quantity yi° will not be computed accurately 
here, since this is a problem central to all theories of 
alpha decay and not special to parity nonconservation 
considerations. Instead, the quantity yi° may be esti
mated, within an order of magnitude, to be 

yi°~0yw, 

where yw is the Wigner limit (3/2MrR
2)l/2 and 0 is the 

average dimensionless reduced width, equal to about 
0.1 for light nuclei and 0.2 for heavy nuclei. This gives 

7 2 ~0.8X10- 1 0 eV; ,4 = 16 ($2~1.0X10rn) 

~0.9X10~9 eV;yl = 160 (3*«4.5X10-1 8 

average of extra proton 

and extra neutron). 

Another consideration here is the effect of the parity 
conserving "alpha-daughter" force. Including such 
an interaction vitiates the orthogonality argument, 
since the initial and final particles are no longer states 
of the same internal Hamiltonian. I t is, however, con
sistent with our model to ignore this interaction, as
suming the latter to be well approximated by a simple 
scalar force between the mass centers of the "alpha" 
and the "daughter," and therefore not influencing the 
internal motions. 

The parity-forbidden alpha decay will always be in 
competition with other decay modes. The even-even 
nuclei, having 0 + ground states, and therefore not 
parity forbidden to alpha decay, are not of interest, 
leaving the odd-odd nuclei which are almost all unstable 
to beta-decay processes (exceptions are H2, Li6, B10, 
and N u ) . The nuclei, unstable energetically to alpha 
decay, in which either the daughter or parent spin is 
zero (always 0~) are listed in Table I. Ideally, the spin-
zero nucleus should be the parent, otherwise branching 
to excited states usually results in the parity forbidden 
alpha decay competing with the allowed alpha decay 
and Eq. (27) gives branching fractions of the order 
S ^ I O - 1 2 . Having the spin-zero nucleus as parent will 
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TABLE I. Alpha decays involving 0~ odd-odd nuclei. 

Nucleus 

67Ho16« 

Daugh te r /Pa ren t 

65Tb162 

<— 
7lLu 1 7 0 

79AU200 

8 1 T P 6 

8lTl2 i 0 

93NP
2 3« 

sfiAm244 -* 

svFr224 

oiPa2 8 4 

9 3 Np 2 S 4 

9 5 Am 2 3 8 

69Tm166 

77Tr196 

79AU202 

(79AU206) 

• 9iPa2 3 2 

93NP240 

8 9Ac2 3 0 

9iPa2 3 0 

9 3 Np 2 3 4 

69Tm1 7 0 

7 3 Ta 1 7 4 

uiTPM 

8 3Bi2 1 0 

8 3Bi2 1 4 

ssAm2 4 0 

wBk8*8 

89AC228 

/* 

1-
(2") 

2" 

1-

1-

1-

2-

1-

-G«(MeV) 

0.046 
0.769 
2.6 
3.3 
1.0 
1.0 
0.342 
4.946 
3.2 
5.599 
5.14 
5.77 
5.34 
5.51 
4.61 
4.20 
5.43 
6.01 

n/2(sec) 

9.7(4) 
1.1(7) 
1.7(5) 
4.7(3) 
2.9(3) 
1.2(8) 
2.6(2) 
4.3(5) 
2.5(2) 
1.2(3) 
7.9(4) 
1.8(5) 
1.6(3) 
7.0(4) 
2.2(4) 
7.1(1) 
3.8(5) 
7.2(3) 

Expected 
branching 

1.7(—69) 

5.3(-13) 

3.6(-21) 

7.5(—21) 

a The listed half-lives refer to the parent nucleus in the proposed alpha decay, the instability usually being due to beta-decay processes except for Bi210 and 
Bi21* which alpha-decay to excited states of Tl206 and Tl21°. The arrows indicate transitions that satisfy all the requirements for parity-forbidden alpha 
instability. The last four nuclei in the "nucleus" column do not have measured spins. These are listed because no alpha activity has been observed, and 
it is therefore possible that parity forbids the transition. Some of the nuclei here assigned to 0" are themselves uncertain. The half-life and Q values may not 
be the latest or most accurate values, in some cases being estimated from a semiempirical mass formula, QP. A. Seeger, Nucl. Phys. 25,1 (1961)], and this 
table should not be regarded as a reference for these quantities. An entry such as 9.7(4) indicates 9.7 X104. The branching fractions were estimated from the 
reduced widths of neighboring even-even transitions. 

not necessarily prevent the possibility of branching, 
but often the decay to the low-lying levels is also parity 
forbidden. 

Decay from excited states would seem to have all the 
above difficulties and have additionally to compete with 
gamma decay. However, a high-spin isomeric state can 
be virtually stable to both beta and gamma decay while 
unstable to alpha decay, since the spin change does not 
play a very important role in the alpha decay. On the 
other hand, the appearance of low-lying states invites 
regular alpha decay to these states in competition to 
the forbidden ground-state decay. An example is the 
isomeric 9~ state of Bi210 which almost entirely decays 
to excited states of Tl206. From an experimental stand
point, it is undesirable to have 1012 alpha particles to 
scatter about when trying to detect a single rare one 
having a not very different energy. 

In the light nuclei, where one often finds large gaps 
between the first excited and ground states the branch
ing discussed above should be less serious. Table II 
illustrates the excited nuclear states of self-conjugate 
nuclei known to be unstable to parity-forbidden alpha 
decay. Many of these states have been investigated2-9 

and the upper limits on ^ are included in Table II. 
Undoubtedly, other examples exist (S32 has several 
uncertain assignments); however, beyond F18 the odd-
odd self-conjugate nuclei become proton unstable 
before they become alpha unstable, and the even-even 
self-conjugate nuclei become beta-decay unstable above 
^4=40 and exceedingly difficult to produce above 
4̂ = 60. It is not necessary that the nuclei be self-
conjugate, but the El and Ml transitions tend to be 
weak for self-conjugate nuclei and thereby would give 
less competition to a parity-forbidden alpha decay. 

C. Beta Decay 

No new effects appear to be introduced by the parity 
nonconserving force. Essentially, the nuclear parity 
nonconserving effects generate axial vector couplings 
from the polar vector interaction and vice versa, but 
both are present anyway. To display the form of the 
additional couplings, the single-particle approximation 
will be used first, and then the general result may be 
written down by inspection. The transition operators 
for beta decay are simply 1, 75, or, and a which are 
further coupled to the retardation expansion of the 
outgoing lepton wave functions to give the transition 
operators for "forbidden" transitions. In this abbrevi
ated notation, o- represents the operator £* ViTiJ', the 
sum extends over all nucleons. 

The new operators generated by Eq. (22) are 

Cl,o-r] = 0, 

C75,o-r] = 0, 

i[o-,o-r] = 2(o-xr), 

i]jx.,v x] = i£— ijbV, o- • t] = — 2fy6 (<r x r ) , 

which give the replacements 

1->1 0--XF- 2MG"(o-xr), 

76—*75 a—>a+2G"l. 

Our instructions are now to use the parity pure wave 
functions, and for example an allowed axial vector 
transition goes by the regular part of <r and the irregular 
part of a. Thus it is more useful to write the replace
ments as 

1=>1, (r=><r+2G"l, 

7 5 = > 7 5 j «=*a-2MG"(o-xr) . (28) 
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T A B L E I I . Alpha-decay unstable (pari ty forbidden) excited s tates of light nuclei. T h e entry SPexpt refers to the upper limit imposed 
by experiment. I n order to deduce JPexpt, i t is always necessary to est imate the irregular alpha-decay width I V and often necessary to 
est imate the width for competing decay modes, here designated I \ . T h e values assumed in the references indicated have therefore been 
included for comparison. Only states stable to particle decay (n, p, and d) have been included due to the generally large competing widths 
for such processes. Consequently, the work of Refs. 2 and 3 does not appear in this table. Equat ion (23) gives JFtheo. 

Nucleus 

3Li« 
8 0 1 6 

8 0 1 6 

8 0 1 6 

sO*6 

loNe20 

i4Si28 

(J\T) -+ 

0+1 
2 -0 
2~0 

o-,o 
3+0 
2 -0 

(4-),0 

dV) 

(J*,T) 

1+0 
0+,0 
0+0 

0+,0 
0+,0 
0+0 
0+0 
0+,0 

£(MeV) 

3.560 
8.88 
8.88 

10.95 
11.08 
4.97 
7.03 

10.71 

-G«(MeV) 

2.089 
1.72 
1.72 

3.79 
3.92 
0.24 
2.30 
0.72 

Ref. 

5 
5 
6 
7 
8 
9 
4 

I\(eV) 

3 ( - 3 ) 
3 ( - 3 ) 
2 ( - 3 ) 
3 ( -3 ) 
3 ( - 3 ) 
K-3) 

1.8(-1) 

r«'(eV) 

6(2) 
6(3) 

6.7(3) 
3(3) 
3(3) 

2.8(2) 
2(2) 

w expt 

1.3(-11) 
1.3(-12) 
7 ( -12) 

1.3(-10) 
2 ( -12) 

2.4(-10) 
2 ( -9 ) 

w theo 

4.9(-14) 
1.0(-13) 
1.0(-13) 
1.0(-13) 
1.0(—13) 
1.0(-13) 
1.0(-13) 
1.0(—13) 
1.0(—13) 
1.1(-13) 
l . K - 1 3 ) 
1.4(-13) 

Since S commutes with the spatial coordinates, the 
replacements (28) are then made in every term of the 
retardation expansion. This means that no new angular 
correlations, spectrum shape corrections, etc., will 
appear, and the factors already present will merely be 
changed slightly (order G) in magnitude. 

There is very little hope of distinguishing <r from 
<r+2G"l: only if one knew that (a) = 0 could one then 
decide whether 2G"(l) was being detected. 

In the more general situation, an operator S must 
exist such that yp^eiS\p) hence Eq. (28) becomes, to 
order S, 

1=»1 +t[75,5], 

cr=> cr + C a > ^ ] > 

a => a -NE^S], 

and the possible noncommutivity of S with the co
ordinate terms of the retardation expansion will not 
introduce any new dependence on the lepton momenta. 
The new operators will additionally have new isotopic 
spin dependences, as mentioned briefly in Sec. IIIA, 
but this in no way changes the above argument. 

D. Gamma Decay 

If the spin-parity change in a nuclear deexcitation 
allows emission of a photon of given multipolarity, say 
EL, then parity admixing in general allows the multi-
polarity ML to also be emitted. Experimentally, the 
irregular radiation must be detected indirectly, as, for 
example, from the interference of the two amplitudes 
to give a slight ellipticity to the polarization of the 
radiation. As suggested in Sec. IIIB, this effect may be 
greatest for transitions of the form EL(ML) and 
weakest for ML (EL). Intuitively, we might argue that 
the tendency for the nucleons to correlate their spin 
and momentum will not be manifested externally 
unless the correlation changes in the transition from 
initial to final states. In the weak electric transition, 

the correlation changes only in that the initial and final 
wave functions do not, in general, have quite the same 
admixing. In the single-particle approximation, they 
have equal admixing and the weak EL vanishes identi
cally. On the other hand, the magnetic transitions, e.g., 
spin-flip, reverse the spin direction and give a maximal 
change in correlation. 

The magnitude of the circular polarization is so small, 
of order $, that direct experimental verification is at 
present unlikely. One must search for situations in which 
the parity-allowed transition is greatly inhibited, so 
that the weak parity-forbidden transition will show up 
more, provided it is not also inhibited. The great diffi
culty of this program is that one cannot be at all sure, 
given a strongly inhibited EL transition, that the weak 
ML is not inhibited for the same reason. For example, 
the 56-keV transition from the isomeric state of Hf180 

(8~"—» 8+) is enormously inhibited (10~16 of the Wigner 
width) and a priori looks like a perfect example. How
ever, the 8+ state belongs to a K=0 band while the 8~ 
is thought to be the lowest member of a K=8 band. 
The selection rule47-48 AK=0, 1 for dipole transitions 
is then strongly violated, explaining the inhibition, and 
this selection rule applies equally to the Ml transitions. 

What is usually done in practice is to choose a nucleus 
or group of nuclei in which the El transitions, say, are 
inhibited but the neighboring Ml transitions are not. 
In the absence of any information on the structure of 
the nuclear states, this is probably about as good as one 
can do. It is therefore advantageous to study nuclei 
about which one possesses some knowledge of the 
structure, in this case Eq. (22) may be employed to 
generate the appropriate operators for the irregular 
transitions and the transition amplitudes may then be 
computed. It is not usually necessary to compute the 
inhibited regular transitions since this can be measured 

4 6 1 . Block, M. H. Hull, Jr., A. A. Broyles, W. G. Bouricius, 
B. E. Freeman, and G. Breit, Rev. Mod. Phys. 23, 147 (1951). 

47 G. Alaga, Nucl. Phys. 4, 625 (1957). 
48 B. R. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab. 

Selskab, Mat. Fys. Skrifter 1, No. 8 (1959). 
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experimentally, while the amplitude of the irregular 
transition (which should be uninhibited if the case is 
to be promising experimentally) can be computed with 
some confidence. In Appendix A it is pointed out that 
Eq. (14') does not contribute to the electromagnetic 
coupling in the single-particle approximation, thus the 
electromagnetic transition operators are unchanged by 
addition of the parity nonconserving interaction (14). 
Gauge invariance49 guarantees in any event that the 
EL operator is directly proportioned to the time 
derivative of the corresponding static multipole moment 
operator. Thus the dipole transition operator is dex/dt 
= i[H)ef} = io)er, where co is the transition energy. This 
result is easily verified for the Hamiltonian (20) by 
using the replacement p—>p—ek to introduce the 
electromagnetic interaction and comparing the result 
(in the dipole approximation) with i[77,er]. In trans
forming via (21) to the unperturbed system, it makes 
no difference which form of the transition operation is 
employed since e~iSi£HJer2eis=i[_Ho)eT2 = io)er in the 
unperturbed system also. The numerical quantity o> 
is unchanged to order G2. The Ml operator (e/2M) 
X(3/^Tr)1^(g<ra+gl\)z gives from Eq. (22) the Ml 
operator (e/2M)(3/^)^(2g(X~gl)(i^ x r ) , . The E l (Ml) 
transitions then give 

^(M^f^^Vll^xrl^Ailrll). (29) 
\ 2MR / 

Similar expressions obtain in the single-particle approxi
mation for higher EL(ML) multipolarities from the 
replacements 

<r->2icrxr, 1 - + — i a x r (30) 

in the appropriate ML transition operator. I t might be 
noted here that vanishing of (||er||) will not guarantee 
an arbitrarily large value of (REKMD, since the small 
magnetic effects also give an additional contribution 
— ia)gve(\\vXr\\)/4:M to the El transition operator 
which gives a value for (&Ei(Mi)=z—2(2g<T—gi)/gauR. 
This does not constitute a limit since the usual dipole 
contribution (||er||) can interfere with the magnetic 
contribution. 

As discussed in Sec. I I IB , the ML(EL) transitions 
give (5likri(jg?i) = 0 in the single-particle approximation. 
This does not appear to be a fundamental result, how
ever, and simply suggests that this type of transition is 
less promising for demonstration of parity noncon
serving effects. Nevertheless, it is important to know 
the form of the operator for these EL transitions if 
favorable experiments are to be selected to test this 
conjecture. Assuming that [S,r]7^0 when more realistic 
Hamiltonians are used, e.g., including the spin-orbit 
force, we then have from Eq. (19) an operator of the 
form %{y(r),(vt)t}+) where y(r) is a scalar operator. 
Approximating 7 to be a constant then gives 7(or-r)r, 

49 R. G. Sachs and N. Austern, Phys. Rev. 81, 705 (1951). 

and we adopt the form EL = y(<r-r)EL, thus 

2MT(||(«TT)r[|) 

The tendency for 7 to vanish will be compensated some
what by the relatively greater strength of the EL 
transitions to ML which otherwise favors ML(EL) over 
EL (ML) transitions as seen by the factor MR^6Allz 

i nEqs . (29) and (31). 
A promising theoretical situation obtains in nuclei 

where the closing of shells and/or strong pairing forces 
seem to allow, as a sensible approximation, the separa
tion of the nucleus into a single nucleon coupled to an 
inert core. 

Spherical Nuclei 

If the core is spherically symmetric, the extra-core 
nucleon will have a definite / and j , and the quantity 
(R may then be computed with some confidence for 
transitions among the possible (l,j) states. Situations 
of interest for detection of parity nonconservation are 
where the regular transition is forbidden and the ir
regular transition is allowed. For the EL(ML) single-
particle transitions this never occurs, since the tran
sition is allowed if \j/~ji\<L<\jf+ji\ and the 
parity changes, conditions that ML must also satisfy. 

The value of (REHMD is given for the possible single-
particle El transitions in Eq. (32) below. The radial 
parts of the transition amplitudes cancel in (REUMD in 
the single-particle approximation. 

<5lBHMi) = 2(l+l)-(2g.-gi)/2MR 

(M+|)->(/+l,/+J) 
= ±i-(2gff-gl)/2MR 

(U±i)-»(H-M+l±J). (32) 

The El transition (1,1+%)-* ( Z + l , / + J ) is relatively 
weak since the spin direction changes (in the classical 
limit), accounting for the larger (R value. 

In the M1(E1) transitions we obtain similarly, using 
expression (31), 

(RMi(Ei)=-2y' (l,l+^)-*(l,l-h) 

= = F 7 ' / ( 2 / + l ± 2 ) ( / , Z ± i ) - > ( Z , J ± J ) , (33) 

where 

y'=2yM(t*)/R(g.+gm\)/(\M))~0-2Al''y/g.). 

I t is relatively straightforward to compute 7 for the 
special case of a harmonic oscillator potential with a 
spin-orbit force (a/2)<r-l. The contribution comes in 
this case from the spin-orbit contributions to the energy 
denominators which destroys the otherwise perfect 
cancellation of the irregular terms. The results are, to 
first order in a/o>o^^4~~1/3 where w0 is the oscillator level 
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spacing, 

0 (*, fcfcf) - > ( I , fcfc*) 
(34) 

= _ ^ _ . [ ( K + / + i ) ( K + ; + 3 ) ] i / 2 

wo2-R 

(*-U-i)-»(H-i,H-i), 
where /c is the number of nodes in the radial wave 
function. The empirical estimates a^l3A~2,z MeV and 
co0^4U-1/3 MeV give a/wfR^l.SA-w imdy'~9A/g9. 
It must be stressed that these estimates are mainly to 
indicate the order of magnitude of the corrections in
volved; the finite size of the nuclear core also gives 
corrections of magnitude similar to Eq. (34). In the 
magnetic transitions, a special selection rule does 
operate. The "ATI" transition ( / - 1 , / - | ) - + ( / + U + § ) 
is, in fact, forbidden since the magnetic moment oper
ator cannot change the orbital angular momentum by 
2 units. Such "/-forbidden" magnetic transitions50-52 

occur for every magnetic multipole order. The E2 
transition (El+1, in general) is not forbidden, and, if 
the Ml were rigorously forbidden, we would have 
£2 (El) interference giving 

<R*2(W = ~ L(2l~ 1) (2l+3)/3ji> • ( T / W £ 2 ) 

(Z-U-i)->(H-l,H-£) 
- -24L4- 1 / 3 . 

In general, the tensor force admixes I with Z±2 and 
these /-forbidden transitions are observed to be about 
two orders of magnitude slower than the Weisskopf 
estimates.58 Hence, 

\(RMHEi)\^10(Tw(El)/Tw(Ml)y^lSA^ 

(/-l,/-|)->(/+l,/+i). 
When more than one particle contributes to the 

electromagnetic decay, as would be expected in nuclei 
whose states cannot be reasonably separated into core 
+extra nucleon, the amplitudes for the regular tran
sition may interfere destructively, while the irregular 
amplitude interferes constructively. Such interference 
occurs for example in T=0—>T=0 transitions of self-
conjugate (N=Z) nuclei. Here, the El transitions 
(only) are forbidden, except via isotopic spin im
purities,54 and the transition amplitudes are observed 

50 A. Arima, H. Horie, and M. Sano, Progr. Theoret. Phys. 
(Kyoto) 17, 567 (1957). 

51 G. M. Bukat, Zh. Eksperim. i Teor. Fiz. 39, 1716 (1960) 
[translation: Soviet Phys.—JETP 12, 1198 (1961)]. 

52 E. Ye. BerlovichYu. K. Gusev, V. V. Ilyin, V. V. Nikitin, 
and M. K. Nikitin, Nucl. Phys. 37, 469 (1962). 

53 D. H. Wilkinson, Nuclear Spectroscopy, edited by F. Ajzen-
berg-Selove, (Academic Press Inc., New York and London, 1960), 
Part B, p. 859. 

54 M. Gell-Mann and V. L. Telegdi, Phys. Rev. 91, 169 (1953). 

to be reduced by factors of about 100. It happens, 
however, that the Ml transitions are also weak55,66 

(by a factor of about 10 in amplitude) and 6{EKMD is 
amplified by a factor of about 10 over the estimates of 
Eq. (32). 

Deformed Nuclei 

If the core is strongly deformed, the orbital and spin 
angular momenta of an extra-core particle tend to 
become decoupled and a greater variety of selection 
rules can act. In this model,41,48 the single-particle wave 
functions are described by JKw^NnJi] in the usual 
notation.57 The states admixed by any pseudoscalar 
interaction in the nuclear Hamiltonian will have 
A/= Ai£=0 and Ax (yes). Since the parity is given by 
(—1)^, we must have AiV=odd, and for the single-
particle approximation, AiV=l. The change in orbital 
angular momentum of the extra particle must be ± 1 
for a single-particle parity-nonconserving scalar po
tential since the spin operator can at most be a tensor 
of rank 1 and must couple with the spatial dependence 
to give a rank-zero tensor; hence, the spatial operator 
must also be rank 1 and therefore can couple only states 
differing by one unit of angular momentum. The pro
jection of the orbital angular momentum is then 
restricted to |AA|=1, 0 requiring |A»«|=0, 1, re
spectively. These rules may easily be deduced for err 
from Table I of Ref. 48, and are summarized below in 
Eq. (35). The above discussion is to emphasize the 
independence of the selection rules from any specific 
operator such as err. 

(o-+r_+o-_r+) AA==bl, Aw2=0, AiV=±l, =Fl, 

(azz) AA=0, Anz=zkl, AN=±l. 
(35) 

It has already been mentioned in Sec. IIIB that 
spherical symmetry is not required in the single-
particle approximation. 

Suppose a transition involves AN =2 while the 

TABLE III. Asymptotic selection rules for the regular 
El and irregular Ml transitions. 

AK 

0 

1 

Multipole 

El 
Ml 
El 
Ml 
Ml 

Operator 

z 
(ax±icry) (x^Fiy) 

{x+iy) 
crz(x+iy) 
(<rx-\-i(Ty)z 

AA 

0 
± 1 
± 1 
± 1 
0 

Anz 

± 1 
0 
0 
0 

± 1 

AN 

± 1 
± 1 , =F1 
± 1 , =F1 
=bl, =F1 

± 1 

*5 G. Morpurgo, Phys. Rev. 110, 721 (1958). 
66 G. K. Warburton, Phys. Rev. Letters 1, 68 (1958). 
57 / is the total momentum of the state, K is the projection of 

the single-particle total angular momentum on the symmetry (z) 
axis of the deformed core, ir— (— 1)^ is the parity of the state, N 
is the number of nodes in the single-particle wave function, nz is 
the number of nodes on the z axis, and A is the projection of the 
orbital angular momentum on the z axis. 
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TABLE IV. Asymptotic selection rules for irregular 
ML transitions.* 

TABLE V. Irregular EL transitions.a 

AK Multipole Operator AA An2 AN 
Selection 

rule 

Ml 

Ml 

M3 

er+r_ 
cr-r+ 

ar+Z 

<r+r^z 
ajzr+ 
<r+r_r+ 
a-.r+

2 

a+Z2 

a+Zf+ 

cr+r_z2 

<rjz2r+ 

cr+rjr+ 

a-TSj2 

<r+r~zr+ 

cr-zr+2 

a,Z* 

<x+r_r+* 
<r_r+

3 

<r+z2r+ 

<r+zr+ 

-1 
1 
0 

- 1 
1 
0 
2 
0 

1 
- 1 

1 

- 1 
1 
0 
2 

0 

1 
3 
1 

2 

0 
0 

±1 
±1 
±1 
0 
0 

(£) 
±1 

ca 
C&) 

0 
0 

± 1 
±1 

/ n \ 

(s \±:o/ 
0 
0 

(±°2) 
±1 

±1 
±1 
±1 

0, ±2 
0,±2 

±2 
0, ±2 

(±°2) 
0, ±2 

(±1,3/ 

(±1,3/ 
±1,3 
±1,3 

±1 , =F1, ±3 
± 1 , =F1, ±3 

/ ft \ 

(s) \±:o/ 

± 1 , ±3 ± 1 , ±3 

V±l,3/ 
± 1 , =F1, ±3 

a The selection rules have been chosen such that the irregular transition 
is allowed while the regular transition is hindered. Thus, an EL transition 
will be hindered if the selection rule for a ML transition is satisfied. To 
simplify the tables, AK has been taken positive: the operator giving KA 
= — |AK\ is simply generated by interchange of (+ ) and (—) subscripts. 
Here <r± =2-1/2 (ffx zti(ry) and r± =2-1/2(#±fy). Those rules known to apply to 
observed transitions are denoted under "Selection Rule" and correspond 
to those listed in Table VII. 

selection rules allow at most AN== 1. Then we will have 
a "hindered" transition, forbidden if the asymptotic 
quantum numbers were good. For convenience, let us 
refer to such a situation as having a single "order" of 
hinderance and not distinguish among hinderance in A, 
ne, or N but merely sum together and quote a net order 
of hinderance. Then an allowed transition would match 
its selection rule completely and have zero order of 
hinderance. For each order of hinderance, a transition 
is found48 to be reduced in amplitude by about a factor 
of 102, depending on the deformation of the core. From 
the selection rules in Eq. (35), we see that the parity 
irregular transitions can be less forbidden than the 
regular transitions by two orders of hinderance. To 
make this clear, Table III gives the selection rules for 
the El and Ml transitions, i.e., the operators r and 
<r x r. We see that among possible transitions, one with 
AK[ANAnzAA] = 1[101] is allowed both for the regular 
and irregular transition, and would therefore give no 
particular enhancement to (REKMD while the transition 
0£011] should give (REKMD much less than unity, and 
the transition 0[[101] should give (REKMD much larger 
than unity. The latter are of interest in this paper and 
are listed up to electromagnetic multipole order 3 in 
Tables IV, V, and VI. For the EL transitions in Table 

AK Multipole Operator AA Ane AN 

Selec
tion 
rule 

0 

1 

0 

1 

2 

0 

El 

El 

E3 

cr+TJZ 
<x~zr+ 

<r+r-f+ 

CT+1--Z2 

<r-.z2t'+ 

<r+rJr+ 
(T-J-Vj2 

a^.zr+
2 

<r+r^r+
2 

<r+f_s3 

<r+rjzr+ 
<r-r-zr+

2 

o-+r-Z2r+ 

<r+rJr+
2 

a~z2r+
2 

<r~r_r+2 

<r+r^zr+
2 

<r..zr+
s 

or+r-r+s 

-1 ±1 
1 ±1 
3 0 
I 0 
-1 ±2 
1 

- 1 
1 
0 
2 
1 
3 

- 1 
1 

- 1 
1 
0 
0 
2 
2 
1 
3 
2 
4 

±2 
0 
0 

±1 
±1 
0 
0 

±3 
±3 
±1 
±1 
±2 
0 

±2 
0 

±1 
±1 
0 
0 

0, ±2 
0, ±2 

±2 
0, ±2 
±1,3 
±1,3 
±2 
±3 

=F1, ±3 
±1, =F1, ±3 

±3 
±1,3 
±2,4 
±2,4 
±4 
±4 

0, ±4 
±4 

0, ±2, ±4 
±4 

=F2, ±4 
0, ±2, =F2, ±4 

±4 
0, ±2, ±4 

a These selection rules for the EL transitions hinder both the ML and 
the EL+X transitions. 

V, we have used the form (31) and required both the 
ML and EL+1 to be relatively hindered. 

A note of caution: The selection rules are, in general, 
incomplete since those rules which also permit an un
hindered regular transition have been deleted. For 
example, the El operator o-+r_f+ has the same selection 
rules as the Ml operator a+ except for AiV=±2, and 
this alone has been listed in Table V. Note also that the 
quantum numbers of a state are in the order (NnzA), 
while it is customary to tabulate the changes in the 
opposite order as is done in Tables IV, V, and VI. 

Table VII lists the intrinsic states, identified in 
deformed nuclei, whose irregular decay only is allowed 
by the selection rules of Table IV and V. We will 
here examine in detail mainly the dipole transitions, 
since it is often difficult to observe the higher multipole 
radiation. For example, the 424-keV state of Tm171 

decays almost entirely to the spin-f and -\ members 
of the ground-state rotational band (2~D>23]—^ 
i+[}£ll]) via the /^-forbidden but nevertheless more 
intense El and Ml radiation in preference to the 

TABLE VI. Irregular EL transitions in magnetic 
orbit flip transitions. 

AK 
Multi-
pole Operator AA Anz AN 

1 El <rzzr+ 1 ±1 0, ±2 
2 El <rzzr+

2 2 ±1 ±1, =Fl, ±3 
3 E3 <rzzr+* 3 ±1 0, ±2, =F2, ±4 
4 m <TZzr+* 4 ± 1 ±1, =F1, ±3, =F3, ±5 
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TABLE VII. Allowed irregular-hindered regular electromagnetic transitions.8 

Multipole 
Selection 

rule 

a 

b 

c 

d 

e 

i 

g 

Orbit assignments 

!+[413J- | - [523] 
| - [523]—i+[633] 
i+ [404] - | - [514 ] 
l - [514] - t+[624] 
i+[633]-J - [743] 
|+ [624] - f - [734] 
§+[411]-f+[413] 
t - [521 ] - f - [523 ] 
§+[402]-f+[404] 
J - [510] - f - [512] 
f+[631]-f+[633] 
f+[622]- |+[624] 
i_[503]-J - [514] 
i+[400]- i+[411] 
|+[622]-§+[633] 
f+[402]-J+[411] 
| - [ 503 ] - f - [S12] 
f+[622]-R[631] 
f+[642]-§-[523] 
i - [S23]-J+[404] 
}+[633]-J-[514] 
| - [ 5 2 3 ] - R [ 4 1 1 ] 
|+ [633] - i - [521] 
f+[624]—§-[512] 
l - [743] - |+ [631] 
f - [514] -J - [510] 

Nuclei 

Tb 1 6 1 

E r 167 N p 2 3 5 A m 2 4 5 

Lu173,175,177 T/a179 '181 

JJf 177,179 

"(J233 pu239 

Cm246 

Eu153 Tb 1 6 1 

D y l W £,.165 Np237 A m 2 3 ; 

Tm1 7 1 Lu176 Ta1 8 1 

W181.183 

|J233 

Pu241 Cm246 

HfH7 

Re1 8 5 

Pu239 

Tm1 7 1 Lu175 Ta1 8 1 W183 Re1 8 5 

W181 

U237 Pu239 Cm245 

Dyl61 Np235,237,239 Am 2 3 9 , 2 4 1 , 2 4 5 

Tm169.171 

Yb1 7 1 Hf177 

Ho1 6 3 Tm1 6 9 

D y i 69 E r i67 y b 1 7 1 

W181 

TJ233 pu237,239 

Hf1*79 W179 

Ml 

El 

Ml 

El 

M3 

£3 

a Those transitions are listed which satisfy the selection rules in Tables IV, V, and VI, and are known (Ref. 48) to be present in the low-lying states of 
deformed nuclei. The list of such nuclei is probably less complete than the possible orbit transitions. Only seven of the rules of Tables IV, V, and VI seem 
to apply to low-lying states of actual nuclei and these are denoted in the column "Selection Rule" in this and the above tables. The orbit assignments 
are in the notation (Ref. 57) ifrr[iV«*A]. 

hindered E3. Furthermore, the higher multipole tran
sitions do not seem to be as strongly hindered as are 
the E l , with a few exceptions discussed below. 

Experimentally, the E l decay rates are often found 
to be surprisingly slow compared to single-particle 
estimates. Of those listed in Table VII, the f - [ 5 1 4 ] ~> 
J + [ 4 0 4 ] and f + [ 6 2 4 ] - » f - [ 5 1 4 ] transitions are 
found58 to be considerably hindered while the irregular 
Ml transition is allowed from Table IV. Thishinderance, 
necessary to accentuate the interference with the irregu
lar Ml amplitude must not in turn hinder the irregular 
Ml amplitude. We now briefly consider this point. 

The states most accessible for study in the heavy 
nuclei are the low-lying levels populated by beta decay 
and the subsequent gamma-ray cascade, if any. For 
these states, the possible El transitions all violate the 
asymptotic (i.e., AA, Anz, and AN) selection rules, 
despite frequent appearance of states having parity 
opposite that of the ground state. Let us examine the 
|— [514]—»|+[404] transition. In the limit of very 
small deformation, the transition becomes lAn/2,9/2—> 
lg7/2,7/2 (shell-modeljaotation: Ljm where m is the pro
jection of j on a fixed axis), and the El matrix element 

must thus vanish for zero deformation as well as large 
deformation. I t need not be surprising then to find 
that this matrix element never becomes very large for 
any deformation. Numerical calculations have been 
made59 and indeed give very small transition rates. 
For some transitions the observed rate is still smaller 
by two orders of magnitude; however, these calcula
tions involve almost complete cancellation of large 
terms (the cancellation is exact at zero deformation, 
and the terms themselves approach zero at large de
formations), and the model is almost certainly inade
quate for quantitative estimates under such circum
stances. Admixing among the low-lying states will not 
particularly enhance a given El transition if none have 
appreciable El transition elements. The higher multi-
pole transitions, having a greater variety of selection 
rules, are often allowed between low-lying states and 
admixing of these states conspires to weaken hinderance 
given by the asymptotic selection rules, as is found em
pirically. The point of this discussion is to note that the 
slowness of E l transitions is not in conflict with the 
Nilsson model, and therefore allowed transitions, being 

68 E . Bashandy and M . S. El-Nesr , Arkiv Fysik 22, 357 (1962). 

M
fcU. Hauser , K. Runge , and G. Knissel, Nucl . Phys . 27 , 632 

(1961). 
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TABLE VIII. Strongly hindered regular El transitions. These transitions are known to be strongly hindered and in fact obey selection 
rule "a" of Tables IV- VII. The quantity /i/2 refers to the photon half-life of the transition. The experimental electric dipole transition 
rate per second is given by T(E1) while T(M1) is the expected irregular magnetic dipole transition rate calculated as illustrated from 
Eq. (36) et seq. The quantity \(REUMI) \ =[T(M1)/T(E1)$2JI2 as follows from the definition (25). Estimates from Eq. (23) are listed 
under ff, and the product (R^ is that quantity to be used in the formulas at the end of Sec. IVA. The quantity (fii/ai)1/2 refers to the 
polarization properties of the electron as discussed in Sec. IVE, where /Si and «i are the internal conversion coefficients for the magnetic 
and electric dipole transitions, respectively. 

Nucleus (JK) -> (J'Kf) £T(keV) /1/2(sec) T(E\) r ( M l ) / 3 * <R. El {Ml) I lOUFl ( /5 i /« i ) 1 / 2 

7iLu1 7 ; 

? iLu 1 7 i 

7iLu 1 7 7 

TaTa181 

72Hf177 

72Hf17» 

Odd proton 
123 
396 
282 
148 
146 
28 
6 

321 
208 
71 
217 

8.4(-5) 
6.3(-9) 
l.l(-8) 
9.8(-8) 
2.8(—7) 

6.8(-6) 

4.9 (-8) 
7.2(—10) 
7.3(-8) 

<3.5(-7) 

8.3(3) 
1.1(8) 
6.3(7) 
7.1(6) 
2.5(6) 

2.3(3) 

2.0(10) 
5.4(11) 
4.4(10) 
6.3(8) 
1.8(11) 

2.1(6) 

Odd neutron 
1.4(7) 
9.6(8) 
9.6(6) 

>2.0(6) 

3.7(11) 
2.3(10) 
9.0(7) 
1.4(11) 

1550* 
70 
26 
9 

270 

30 

160 
5 
3 

<85 

8.0(-7) 
8.0(-7) 
8.0(-7) 
8.0(-7) 
8.0(-7) 

8.0(-7) 

S.5(-7) 
5.5(-7) 
5.5(-7) 
5.5(-7) 

1.3(-3) 
5.7(-5) 
2.2(-5) 
7.5(-6) 
2.2(-4) 

2.5(-5) 

8.8(-5) 
2.8(-6) 
1.7(-6) 

<4.8(-5) 

3.3 
l.lb 

2.9 
3.2 
3.2 
5.4C 

— 3 4 d 

0.8e 

3.1 
3.4 
3.1 

a J . W. Mihelich et al., Bull. Am. Phys . Soc. 3 , 358 (1958), gives this assignment; however, J . Valentin, Nucl . Phys . 31 ,353 (1961), assigns this s ta te to 
the 5/2 1/2 —[541] orbit , in which case AK—3 and not selection rule "a" explains the hinderance. In the la t ter case, there are no grounds for assigning 
a large value of (R to this transi t ion. 

b a i (expt ) ~6a i ( theo) giving the reduced value listed. 
0 Calculated for Li capture . 
d Calculated for Mi capture . 
e a i ( e x p t ) =12a i ( theo) giving the reduced value listed. 

insensitive to detailed knowledge of the single-particle 
wave functions, can be estimated with some confidence. 
Of course, should additional factors be shown to con
tribute, such as a change in the core deformation be
tween initial and final states, the effect on the irregular 
transition amplitude must also be included. In the single-
particle approximation, a change in core deformation 
would equally hinder regular and irregular transitions. 

Table VIII lists the El transitions among the f —> f 
states discussed above, together with the rate of the 
irregular Ml transition and (REUMD computed for the 
asymptotic wave functions. These transitions are so 
strongly hindered that the Ml admixing may be ap
preciable and the Ml (Ml) interference should be con
sidered in these cases (the 396-keV transition in Lu175 

is about 20% Ml and, as a consequence, the coefficient 
to cos0/s7 in the beta-gamma angular correlation is 
either — 0.5(RiF or — OAGltif, depending on the relative 
phase of the El and Ml transition amplitudes). 

The physical situation here is seen more readily by 
expanding the JKw[NnjC\ states in terms of the basis 
states | NIAX) where I is the orbital angular momentum, 
the projection of I on the symmetry axis is A, and 2 is 
the same projection of the nucleon intrinsic spin. Note 
tha t iT=A+S,7V>/ ,and(- l ) i V '= ( - l ) z .The |+[404] 
state is almost pure41 1444—) in this notation while the 
§-[514] state is almost pure48 |554+>, tfius the El 
operator (x+iy) vanishes while the Ml operator 
z(o-x+io-y) does not. 

The transition rate for a multipole of order L is 

given by 

and 

8TT(Z+1) 
T(L)= a>2L+1B(L) (36) 

Z[(2Z+1)!!]2 

B(L, J-> J') = \{JKLK'-K\JfK') 

<PK' (37) 

where <PK is the instrinsic state, most conveniently 
expanded in terms of the \NIAL) basis states. The 
notation for the vector coupling coefficient is such that 

mi+m2=m3 

The regular transition operators are, neglecting col
lective terms,41 

EL^Me(L,M)^e(Q+(-l)LZ/AL)rLYLM, 

2 
ML=Wlm(L,M) = —(ga<r+gl 1 )• v(rLYLM), 

1M\ L+l/ 
where e2= 1/137, Q = nucleon charge, and the coordi
nates refer to the coordinate system of the basis states 
where \NIA2)=\NI)YIA*&, \Nl) is the normalized 
three-dimensional harmonic-oscillator radial wave func
tion, and Xjs is the Pauli spinor. Thus, to calculate 

file:///NIAL
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T(M1) for the 396-keV L u m transition in Table VIII , 
we obtain first 

eG" 
M\ = (2g.-gl) (icrXr) • V (rY1M) 

2M 
eG" / 3 V'2 

= (2.29)(«rXr)J — ) . 
M \47r/ 

Then we have from Eqs. (36) and (37) 

(87r)(2)co3e2G,,2(2.29)(3) 
T(M1)--

(1)(3!!)2 . . | \ 2 2 1 lI 2 2 / 
(4ir) 

•(554+1 (<rXr) 1 |444-) | 2 

and 

<554+|(<rXr)1 |444-> 

- ( 5 5 4 + | ( c r + S - r + ( T , ) | 4 4 4 - ) 

=V2(554|2|444) 

= Vl(551 r 144X47T)1/2 f Ybi*Y10Yudtt. 

The integral can be evaluated using41 

/ ( 2 / + l ) ( 2 L + l ) y / 2 

\ 47r(2r+l) / 

XQALMll'A^IOLOll'O) 

and <55M44)=(ll/2Ma<o)1/2 with a>0-41i1 /3 MeV 
gives finally 

(16)(2.29)2 co%2tf2 

T(M1) = - =5.4X1011S2sec-1 . 
(15) M'cooR2 

The outstanding example of Ml hinderance (3X106) 
is the ground-state decay of the 480-keV level in Ta181. 
This transition gives (RMI(#I) = 1.4X104y where esti
mating y at around 0.14 gives R^ 2X103. In this 
example, the E2 transition, although itself hindered 
(see explanation of Table V), constitutes 97% of the 
decay rate of this state and (R^2(£?i)^4X 102 is the more 
meaningful quantity. Other favorable M l (El) transi
tions, identified in Eu153, Dy161, and Np237, are hindered 
by at most 104 although better examples may ultimately 
be discovered. 

To determine the sign of (R, we need more infor
mation than the approximate wave functions and the 
decay rate of the regular transition when that tran
sition is strongly hindered. For an E l (Ml) transition 
it is often possible to determine experimentally the 
relative phase of the E l and M2 transition matrix 
elements. Since the M2 transitions are allowed for the 
M l examples on Table V, the relative M l to M2 phase 
may be computed from the approximate wave functions 
and thereby the sign of (REKMD may be determined. 

I t has been pointed out that60 when the extra-core 
particle is a neutron and the transition changes the 
orbital state but not the spin projection ("orbit flip")? 
the magnetic transition rates are extensively hindered. 
Table I of Ref. 60 lists several transitions of this type, 
and these transitions are all allowed for their irregular 
components. The selection rules will not be found in 
Table V since the regular transition is also allowed (but 
retarded due to the zero charge of the neutron) and are 
given in Table VI. The most favorable example is the 
5-M3 transition in W179 ( H - p 2 1 ] - > H - [ 5 1 4 ] ) . 
which is about 7X104 times slower than single-particle 
estimates. Again using Eq. (31), the asymptotic wave 
functions give 

T ( E 3 ) - ( 3 . 1 sec-^T2^2 , 
or 

I (RMZ(EZ) I = 3 8 7 . 

For experimental details such as alignment of ap
paratus, it may be useful to have available transitions 
which should show no parity nonconserving effects. 
Electromagnetic transitions among members of the 
same rotational band are expected to be virtually 
parity pure, since a given transition matrix element is 
proportional to its expectation value for the intrinsic 
state, and the latter must vanish for the irregular 
transition operators as discussed in Sec. IIIA. 

E. Internal Conversion 

In the usual approximation61,62 the transition ampli
tude for internal conversion, the ejection of a bound 
atomic electron, is equal to the amplitude for emission 
of a gamma ray multiplied by a tabulated factor. If the 
photons are circularly polarized, then the electrons will 
also be circularly polarized. A significant advantage 
may be gained by examining the electrons rather than 
the photons, since the electric and magnetic multipoles 
do not couple in the same way with bound electrons. 
This is easily seen for the K shell where a | + electron 
may be ejected as an s wave by an M l transition, but 
must come out a s a ^ wave for the E l transition. The 
difference in coupling becomes pronounced at high Z 
for low-energy transitions where the overlap between 
tightly bound initial-state electrons and the slow final-
state continuum electron is very sensitive to the angular 
momentum of the latter. For special values of Z, E, 
and E, the ratio of the magnetic-multipole to electric-
multipole E"-conversion coefficients, &L/UL in the no
tation of Rose, may be as large as 103 or greater. The 
degree of electron polarization will then be of the order 
{PL/OLL)112 times the EL photon polarization. The actual 
expression is somewhat more complicated due to the 
contribution of two partial waves in general to the 

60 H. Morinaga and K. Takahashi, Nucl. Phys. 38, 186 (1962). 
61 M. E. Rose, Internal Conversion Coefficients (North-Holland 

Publishing Company, Amsterdam, 1958). 
62 M. E. Rose, Multipole Fields (John Wiley & Sons, Inc., New 

York, 1955), p. 65. 
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internal conversion process. For example, in the K 
shell, and Ml multipole couples to both ^i/2 and 3̂/2 
continuum states while the El couples to pyi and ^3/2. 
The final polarization is a weighted average of the inter
ference between the angular momentum \ and f waves 

which precludes simply writing the result in terms of 
(fi/a)1/2 although this should be of the correct order of 
magnitude. The properly weighted result for electron 
polarization in EL (ML) conversion from the K shell 
can be written /L^z/ax,)1 '2^, where 

A= 
2[(Z+l) (U 8 +*4)- (2L+l)Rb+R6l (R1+R2) 

[LIRz+R,+2R,12+ (L+1)|R*+Rt-[2+ (1/£)]1?5- (l/L)Rt\*J* [(2L+ 1)\R1+R2\
2] 1/2 

and \fL\ varies between (4/5)1'2 and (8/5)1'2 if Rz to 
i?6 have the same sign. The Ri are defined in Ref. 62. 
Tables of the individual Ri do not seem to be available; 
however, taking \JL\ ~ 1 is probably not too bad for a 
rough approximation. If the transition is ML (EL) the 
ratio @/a is approximately inverted provided the Lu 
line is examined instead of the K or L\ lines, although 
resolving Lu from the L lines may be experimentally 
more difficult than resolving the K from the L lines. 

F. Scattering Experiments 

In most scattering processes the electromagnetic 
and/or nuclear forces will dominate and virtually 
obliterate any sign of the parity nonconserving inter
actions. The transmission of thermal neutrons through 
a crystal constitutes an exceptional situation, since the 
Coulomb force is absent and the nuclear scatterings 
add coherently to appear simply as an "index of re
fraction" for neutron waves in the crystal. Magnetic 
and spin-dependent nuclear interactions can be circum
vented in crystals composed of atoms without static 
magnetic moments and nuclei having zero spin or 
negligible spin-dependent interaction. Thus, a thermal 
neutron may propagate through a crystal essentially 
as a free particle, and under these conditions the parity 
nonconserving forces may produce observable effects. 

A plane wave of momentum k, in traversing a length 
h of matter with refractive index n, will acquire a phase 
factor exp(i<p) where 

<p— (n—l)kh. (38) 

The index of refraction for neutrons is given to an 
excellent approximation63 by n= l-~2irNf/k*i where N 
is the number of nuclei per unit volume and / is. the 
scattering length due to the nuclear forces. The parity 
nonconserving interaction gives a contribution to the 
index of refraction dependent on the sense of spin 
polarization along the momentum direction. The total 
scattering length is then / + / ' for neutrons polarized 
parallel to k, f—f for antiparallel, where / ' , derived 
in Appendix B, is 

f=2G'MR*kCZ/3A. (BS) 

The quantity C is a correction for the distortion of the 
neutron amplitude inside the nucleus, given approxi
mately (see Appendix B) by 

C~3f/2&(f-R), (B4) 

if / and the nuclear radius R are measured in fermis 
(10-13 cm). 

Consider an incident neutron polarized in the positive 
x direction with momentum k in the positive z direction: 
the polarization is then (1,1) if described in terms of 
spin amplitudes for spin parallel to k, (1,0), and anti-
parallel, (0,1). The spin amplitude after a distance h in 
the matter will be (e~i<p,e+i<p) multiplied by an unim
portant mutual phase factor due to the nuclear forces, 
i.e., the scattering length / . The expression (e~i(p\e+i<p) 
corresponds to a polarization with components cos2<p 
along the positive x direction and sin2<p along the 
positive y direction, thus the neutron polarization has 
been rotated by an angle 2<p in the sense of a right-hand 
screw (if <p is positive) as illustrated in Fig. 4. The angle 
2<p is given by Eqs. (38) and (B5) to be 

2<p=-(2G'/p0)phCZ/A, 

where (2GVp0) = 9.0X10-9 rad cm2 g"1, and p is the 
density of the crystal. For example, bismuth, adopting 
the values jf=8.63F, R=7A3F, p=9.80 g/cm3, h=W 
cm, Z=83, and -4 = 209,'gives the rotation 2<p=—-5.8 
X10 -6 rad, where C comes out to be +0.17. 

Although a rotation of only 5.8X10~6 rad after 
passing through 10 m of bismuth is an exceeding slight 
effect, it may not be completely out of the question to 
detect such a small rotation. Consider an experiment 
in which a beam of neutrons polarized in the positive 
x direction are incident on the "rotator," as in Fig. 4, 
and a polarization analyzer is aligned to detect neutrons 
polarized along the y direction. The ratio, r, of the 
counting rate for + y polarization to — y polarization 
will be r==(%+2<p)/(|—2*>)~l+8^. Very intense 

erf 

\ 
\\ 

63 D. J. Hughes, Neutron Optics (Interscience Publishers, Inc., 
New York, 1954), p. 24. FIG. 4. Rotation of the neutron polarization for <p>0. 
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beams of polarized neutrons can be produced and it is 
not necessary that the polarization be 100% for this 
experiment. Furthermore, the alignment need not be 
exact since all one really wishes to measure is r (rotator 
in)—r (rotator out) = 8<p. The polarization will precess 
in any stray magnetic fields by an amount 0.079,/J/1 Hzdz 
rad cm - 1 G"1, and to keep the net precession small, one 
must limit the average value of Hz to less than 2.5 X10~3 

G. The precession would cancel in the difference 
r (rotator in)—r (rotator out) were it not for the dia-
magnetism of the rotator. Consequently, the net pre
cession must be small compared to <p/^irxf where x is 
the magnetic susceptibility of the rotator, and for the 
above example the average value of Hz must then be 
l e s s t han5X10- 3 G. 

I t is curious that the angular change resulting from 
such an "optical rotation'' [similar to the rotation of 
plane polarized optical radiation in a solution of right 
(or left) handed molecules such as sugar] of neutrons 
is of the same order of magnitude as the other effects 
discussed in this paper. Here, the interaction energy is 
reduced by a factor of p/Mpo^lQr15 while the inter
action length is increased by a factor of about h/R^ 1015, 
and the two factors roughly cancel. 

V. SUMMARY 

In this paper we have adopted the current-current 
hypothesis for the weak interactions and from this 
deduced the form of the parity nonconserving inter-
nucleon potential. This potential is reduced to an 
approximate single-particle interaction and it is ob
served that such an approximate interaction can be 
removed from simple phenomenological Hamiltonians 
by a gauge transformation. On the basis of this simpli
fying approximation, a search is made for experiments 
that might reveal characteristic effects from a parity 
nonconserving interaction. 

The experiments so far performed do not seem to 
have been sensitive enough to test the presence of the 
self-self weak interaction; however, these experiments 
have served the important function of showing the 
amount of parity nonconserving interaction in the 
nuclear forces to be extremely small compared to the 
strength of the nuclear parity conserving forces. Of the 
experiments discussed, beta decay appears to be the 
least sensitive. Observation of the "optical rotation" 
of neutrons passing through matter seems remote, 
although it is amusing to find a quantum mechanical 
effect as subtle as parity nonconservation displayed in 
an (almost) classical experiment. The parity-forbidden 
alpha decay and the various experiments involving 
gamma decay both fall tantalizingly close to existing 
experimental capabilities. The alpha-decay experiments 
cannot give, however, the sign of G. A test that may 
well be feasible is to look for a circular polarization of 
the internal conversion electrons from Lu173 which 
should be polarized by about (jffj/a^CRlFw 0.004. 

Better examples may come to light or the techniques 
may be refined to detect such small polarizations. 

We may have overlooked the really sensitive tests, 
and this paper is offered with the hope of stimulating 
new ideas in this direction. 
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APPENDIX A: DERIVATION OF THE SINGLE-PARTICLE 
APPROXIMATION INTERACTION 

The internucleon parity nonconserving interaction 
(14) is reduced to a single-particle interaction by aver
aging one of the nucleons over the possible states of a 
symmetric core. Consider a nucleus with one particle 
in addition to filled shells. The initial state of the 
particle is denoted by v, the final state by u, and the 
filled-shell states by w, with such subscripts to be added 
as necessary if certain of the quantum numbers are to 
be exhibited explicitly. The many-particle matrix 
element reduces64 to the two-particle matrix element 
given below in Eq. (Al). 

(f\ m = E fd(l)d(2)u*(l)wk*(2)V(l,2) 

X{v(l)wk(2)-v(2)wk(l)}. (Al) 

Only the core neutrons (protons) will interact with an 
extra-core proton (neutron) as can be seen from the 
isotopic spin dependence of F( l ,2) given in Eq. (16). 
Only the exchange term in the brackets of (Al) then 
contributes giving 

< / | f | * > = - £ /"d(l)d(2)«*(l)w**(2)F(l,2)K2)w*(l), 

where the sum over k is now understood to include only 
the appropriate nucleons. The core is assumed to have 
zero total angular momentum and we then write 

E Wk= E WlmTtXc, (A2) 
k m a 

where Xa is the nucleon spin state. This expression is 
valid for a complete shell in LS coupling where the 
shell contains 2(2Z+1) nucleons. For a filled shell in 

64 E. U. Condon and G. H. Shortley, The Theory of Atomic 
Spectra (Cambridge University Press? New York, 1951), p . 173, 
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jj coupling (27+I nucleons), we have 

2 i+ l 2Z+1 2 

I ^ = S wjm= Y Y, cm
(rwim>c(r 

k m m a 
with 

2 2Z+1 

Cm'^C-n-* , E E ( C w * ) 2 = 2 j + 1 , 

and since all projections m (from -\-j to —7) are sum
med over, we have 

2Z+1 2Z+1 21+1 

m m m 

which reproduces (A2) with a weight factor. Using 
(A2), the form of Eq. (14) for the interaction, and 
treating separately specific spin amplitudes of u and 
v then allows (f\V\i) to be factored into separate 
spatial and spin parts. We want to find êffective that 
acts between u and v to give the same result as ( / | V| i), 
as opposed to evaluating (f\V\i) which would require 
a specification of the states u and v. The spin operator 
(o-2—o-i) gives 

E x « ( l ) x . ( 2 ) ( a 2 - a 1 ) x , ( 2 ) x , ( l ) . 
<r 

From rotational invariance it is sufficient to consider 
(<T2—vi)z which gives Yl* (v—<r)dpcr5u<r=0 and con
sequently the first term in Eq. (14) averages to zero. 
The identity i<r2Xcri= (a2—0i)P<r, where 

P * = i ( l + <ri-<r2) 

is the spin-exchange operator, gives for the second term 
in Eq. (14) 

- * « ( ! ) { £ ^(2)(a2-«ri)X,(2)}X,(l) 
<x 

= +2X„(l)«r1X,(l). 

The spatial factor from this term is [[defining 
P21= (p2—Pi)] 

fd(l)d(2)u*(l) E wm*(2)[p2 1 , /(l ,2)]_ 
J m 

Xv(2)wm(l). (A3) 

In the limit /(1,2) —> 5(1,2), we can employ a second 
identity 

[p2 1 ,5(l,2)]_={p2 1 ,6(l,2)}+P^, (A4) 

where PQ is the coordinate exchange operator. The 
proof rests on the observation that integrals over 
d(l)d{2) of 6(1,2) multiplied by nonsingular antisym
metric functions of 1 and 2 are identically zero. The 
operators in (A4) can connect only states of opposite 
symmetry since p2i operating on a symmetric state 
gives an antisymmetric state and vice versa. Hence, 
only one of p2i5(l,2) or 5(l,2)p2i has a nonvanishing 
contribution, depending on whether the initial or final 
state is antisymmetric, respectively, and so Q)2i,5(l,2)]_ 

and {p2i,5(l,2)}+ are equal within a sign, this being 
provided by Pq. The approximate validity of (A4) for 
a force with finite range then depends on the range a 
being short compared to the wavelength, or more 
quantitatively 3k2a2/5<<Cl. This criterion is satisfied, 
although not very strongly, for nuclei where taking 
a^My~l and assuming an average nucleon kinetic 
energy of about 30 MeV gives 3k2a2/S equal to 0.10. 
Combining (A3) and (A4) gives 

/ r f ( l ) « ( l ) [ Z ^(2) W m *(2){p 2 1 , / ( l ,2 )} + W m (2)>( l ) . 
J «* J 

The symmetry of the siibstates averages p2 to zero 
giving finally for the effective interaction 

V 8 A G V + 1 ) 
Veii= av{pliP(l)}+9 (A5) 

SM 

where Tu = \(\ —T Z
1T z

2)Pr has been used to obtain 

P(1) = Z Id(2)wJ{2)f(lM^-rzW)wm(2) 
m J 

= £ td{2)wm*{2)f{\,2)wm{2)-h[l+r^{N-Z)/A-]. 
m J 

The quantity p(l) is then the effective nuclear isotopic 
spin density, weighted for the range of the interaction 
/(1,2), seen at the position of nucleon 1. Note that the 
sum is over all nuclear states in the core. Definition 
of p( l) in (A5) together with the arguments of Sec. 
I ID then give 

X p ( l ) - X , p n u c i ( l ) - X , p o J [ l + r 2
1 ( ^ - Z ) / ^ ] 

and (A5) becomes finally 

( S ^ X ' G G X ' + D P O , 

F e f f = = VJ>(1+TZ(N-Z)/A) 
8M 

= G'«.j)(l+Tz(N-Z)/A) = G"a-p, (A6) 

where G'=0.22 X10-7 . 
Although the shell model has been used at a few 

points in this section, the only assumption actually 
required is that the core remain unchanged and have 
zero spin. If Eq. (14) is modified to have isotopic spin 
dependence 

r+
1r_2+rH h

2r_1+61( l -f-r / r / ) + 6 2 ( l - r , 1 T, 2 ) , (17) 

then the isotopic spin dependence of (A6) is modified to 

la+brz{N-Z)/A-]1 

where 

(MM-l)a=0uM-l) + 2e2, 

( M
V + 1 ) ^ ( M B + 1 ) ( 1 - 2 6 1 ) + 2 ( 6 2 - 6 1 ) . 

The"contribution of Eq. (14) to the electromagnetic 
coupling (140 averages to zero as can be seen in the 
reduction from (Al) to (A3). 
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APPENDIX B: IRREGULAR SCATTERING LENGTH 
FOR LOW-ENERGY NEUTRONS 

That part of the scattering length for low-energy 
neutrons sensitive to longitudinal polarization of the 
neutrons is computed for a simple nuclear model. Let 
1^(1) represent the wave function of the neutron 
propagating with momentum k in the positive z direc
tion where 

^ + ( l ) = i ; il(2l+\)e^Pl(x)Rkl(r) x=k-f, 
1=0 

assuming a spherically symmetric nuclear potential. If 
interaction with the nuclear potential were ignored, 
then Rki(r) —> ji(kr), where ji(x) equals (ir/2x)112 

XJ 1+1/2(00), 81=80, and the wave function becomes 
exp(ikz+i8o). However, this wave function is assumed 
known, and the correction due to the parity noncon-
serving interaction of (A6) is 

M 

2TT 

pikm 

-(-iG"a.vW(2)d(2), (Bl) 
ri2 

where ru= |ri—r2| and the integral extends over the 
nuclear volume. From symmetry Vx and Vy give no 
contribution, and taking the incident neutron to be 
polarized in the positive z direction, (Bl) becomes 

-IMG" r P^n 

2TT 
~Vz(2W(2)d(2). (B2) 

Tl2 

The coefficient of exp(ikri)/ri in the limit r\—-> <*> of 
(B2) is the scattering length f and for k—»0, (B2) 
together with Vz=x(d/dr)+ [_(! — x2)/r~]d/dx gives 

+1 
/ ' = -iG"M E il(2l+\)e^ [ f 

z=° Jo J-i 

X\xPi(x) 

r2drdx 

l+l l+l 1 l+l 
Rki'(r)+ Rki(r) 

r J r 
RkiPi+i(x) 

This expression is readily simplified using y i i + 1 PiPvdx 
= (2/2l+l)8w and P0(x)=*l, Pi(x)*=x to give 

f' = 2G"Mei8if (Rkl'+-RkX
2dr. (B3) 

For a square-wrell potential Rki=\Jz/Kjo(KR)~}ji(Kr) 
for r<R, where K= (2MU)1'2 with U the depth of the 
potential. The coefficient of j \ correctly matches the 
interior solution to the incident (asymptotic) plane 
wave provided the phase shift $ i~ 0. For this potential, 
tan$i= ( ^ ) 3 [ C ( f ) - l ] / 3 where { = KR and 

C(f) = 3i!(f)/fio(r) = 3 ( l - r cotD/f2. (B4) 

Expression (B3) gives 

f=2G"MkR'C(t)/3. (B5) 

In the limit U—>0 we have K->k~0 and C(0) = 1 
giving the same final result for / ' as would be obtained 
by initially assuming exp(^z) for the unperturbed wave 
function, i.e., neglecting the nuclear forces. The cor
rection for these forces is then the expression given in 
(B4) if the approximations discussed above are em
ployed. For thermal neutrons scattered by nuclei, the 
phase shift 81 will become important only if C>101 5 . 
The expression (B4) is rather inconvenient for esti
mating C, since {* for heavy nuclei may be 10 or larger. 
Small relative uncertainties in f will then make large 
uncertainties in cotf. We can make use of the experi
mentally determined quantities / and R by way of the 
relation R/(R— / ) = f cotf given from the square-well 
model. The correction C is then given from (B4) to be 

C=3f/2R>(f-R) • (1/Jf £ 0 « 3 / / 2 2 P ( / - J ? ) , (B6) 

if / , R are in fermis since MU~ 1F~2 if U is estimated to 
be about 40 MeV. Expression (B6) also is probably less 
sensitive to the specific model for the nuclear 
interaction. 


